PHY401 Exercise Sheet 10

HS2025 Prof. Fabian Natterer Prof. Marc Janoschek

Due on 25 Nov. 2025 Discussion on 25 Nov. 2025

Setup In this exercise sheet we will explore the basic properties of two coupled superconductors. The order parameter ψ of each superconductor can be written as

$$\psi = |\psi|e^{i\phi} \equiv \sqrt{\rho_s}e^{i\phi} \tag{1}$$

where ρ_s is interpreted as the density of Cooper pairs (two-electron pairs) and ϕ is the phase of the order parameter. This order parameter behaves as a wave function and satisfies the time-dependent Schrödinger equation

$$i\dot{\psi} = H\psi$$

where we set $\hbar = 1$ for simplicity, $\dot{\psi} \equiv \partial \psi / \partial t$, and H is the Hamiltonian.

1 DC Josephson effect ★ New 1

If the two superconductors are separated, they evolve independently. The wave function of the twosuperconductor system can be written as a vector $\Psi = (\psi_1, \psi_2)$, where ψ_i is the order parameter of the i-th superconductor. The Schrödinger equation for the two system is given by

$$i\begin{pmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \end{pmatrix} = \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Now we bring the two superconductors closer and put a thin insulating layer between the two superconductors, which creates a coupling effect. As we discussed in exercise sheet 7, the coupling is characterized by the off-diagonal elements in the Hamiltonian. Let us add in an extra coupling constant κ to the Hamiltonian matrix:

$$i\begin{pmatrix} \dot{\psi}_1 \\ \dot{\psi}_2 \end{pmatrix} = \begin{pmatrix} E_1 & \kappa \\ \kappa & E_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \tag{2}$$

This off-diagonal term also encodes the tunneling effect.¹

(a) Using Eq. (1), prove

$$\frac{\dot{\psi}_i}{\psi_i} = \frac{1}{2} \frac{\dot{\rho}_i}{\rho_i} + i\dot{\phi}_i, \quad i = 1, 2 \tag{3}$$

(b) Rewrite Eq. (2) and prove

$$i\frac{\dot{\psi}_1}{\psi_1} = E_1 + \kappa \sqrt{\frac{\rho_2}{\rho_1}} e^{i\delta}, \quad \delta \equiv \phi_2 - \phi_1 \tag{4}$$

similar for ψ_2 .

 $^{^1}$ It is good to review the concept of coupling and the physical interpretation of the off-diagonal term in the Hamiltonian.

(c) Combine Eq. (3) and Eq. (4). Prove that from the real part of the equation, we have

$$-\dot{\phi}_1 = E_1 + \kappa \sqrt{\frac{\rho_2}{\rho_1}} \cos \delta \tag{5}$$

and from the imaginary part, we have

$$\dot{\rho}_1 = 2\kappa \sqrt{\rho_1 \rho_2} \sin \delta \tag{6}$$

Similar for ψ_2 and ρ_2 .

- (d) Use Eq. (6) for ρ_1 and ρ_2 to prove that the Cooper pair density is conserved in the entire system, i.e. $\rho_1 + \rho_2 = \text{const.}$
- (e) Prove that the current density is²

$$J = 4e\kappa\sqrt{\rho_1\rho_2}\sin\delta \equiv J_c\sin\delta \tag{7}$$

This means that as long as there is a phase difference, there is a current flowing between the two superconductors.

2 2 AC Josephson effect ★ New

Now we assume that the two superconductors have the same properties, i.e. same material, same transition temperature, and same Cooper pair density: $\rho_1 = \rho_2$.

(a) Use Eq. (2) to show that

$$\dot{\delta}(t) = E_1 - E_2 \equiv 2eV,\tag{8}$$

where V is the voltage across the junction. The extra factor of 2 again comes from the fact that each Cooper pair carries 2 electrons. Prove that this further leads to

$$J = J_c \sin(2eVt) \tag{9}$$

- (b) Analyze the dimension, and resume the \hbar in Eq. 9.
- (c) Calculate the frequency of the AC Josephson effect when the voltage $V = 1 \,\mathrm{V}$. How is this compared to the frequency of (1) the visible light, soft X-ray, microwave; (2) plasma frequency; (3) electron cyclotron frequency; (4) phonons?

3 3 SQUID \star New

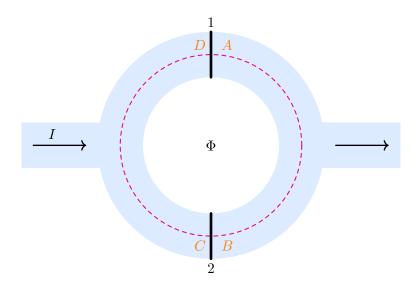
In exercise sheet 9, we derive the London equation when the order parameter ψ is uniform. However, if the phase is not uniform, the current density in the superconductor will not only depend on the vector potential A, but also depend on the gradient of the phase $\nabla \phi$:

$$J = \frac{\rho e}{m} \left(\nabla \phi - 2eA \right) \tag{10}$$

where m is the mass of the electron, and $\hbar = 1$.

Let us consider a superconducting ring with two junctions denoted by 1 and 2, shown in the figure below.

²The extra factor of 2 comes from the fact that each Cooper pair carries 2 electrons.



(a) Choose a path deep inside the ring (dashed line) where the current density is zero. Calculate the loop integral of both sides of Eq. (10). Prove that

$$2\pi \frac{\Phi}{\Phi_0} = \delta_1 - \delta_2,\tag{11}$$

where Φ is the magnetic flux, $\Phi_0 = \frac{h}{2e}$ is the flux quantum, $\delta_1 \equiv \phi_A - \phi_D$ and $\delta_2 \equiv \phi_B - \phi_C$.

(b) Assume that two junctions are identical, for simplicity. The current density flowing through the junction i is denoted by J_i . Use the relation $(J = J_c \sin \delta_1 + J_c \sin \delta_2)$ to prove that³

$$J = 2J_c \sin\left(\frac{\delta_1 + \delta_2}{2}\right) \cos\left(\frac{\delta_1 - \delta_2}{2}\right) \tag{12}$$

which further leads to

$$J = 2J_c \sin\left(\frac{\delta_1 + \delta_2}{2}\right) \cos\left(\frac{\pi\Phi}{\Phi_0}\right)$$

(c) Depending on different circuit setup, δ_1 and δ_2 could evolves differently with time. In some cases, $\delta_1 + \delta_2$ leads to a high-frequency oscillation, while $\delta_1 - \delta_2$ gives a low-frequency oscillation. Therefore, the current density in Eq. 12 represents a modulated oscillation (high-frequency oscillation modulated by a low-frequency oscillation). Plot the function

$$f(t) = \sin(100t)\cos(5t)$$

and describe what it looks like.

$$\delta_1 = \frac{\delta_1 + \delta_2}{2} + \frac{\delta_1 - \delta_2}{2}, \quad \delta_2 = \frac{\delta_1 + \delta_2}{2} - \frac{\delta_1 - \delta_2}{2}$$

 $^{^3\}mathrm{Hint}$: