PHY401 Exercise Sheet 4

HS2025 Prof. Fabian Natterer Prof. Marc Janoschek

Due on 14 Oct. 2025

Discussion on 14 Oct. 2025

1 From second to first order transitions in Landau theory ★ New

Setup. Consider a uniform scalar order parameter m (e.g. magnetization) with $m \mapsto -m$ symmetry. The Landau free-energy density is

$$f(m; T, g, h) = f_0 + \frac{a(T)}{2} m^2 + \frac{b(g)}{4} m^4 + \frac{c}{6} m^6 - h m,$$

with $c \ge 0$ for stability, $a(T) = a_0 (T - T_c) (a_0 > 0)$, and a non-thermal control parameter g that can tune b(g). Unless stated otherwise, set h = 0.

- (a) Continuous (second-order) transition. Before doing the exercise, you can try out different combination of positive/negative a, b, and c and plot out the function f(m). It is worth getting some feels of how the shape of the function changes with different signs of a, b, c. For all sub-exercises (a), we assume c = 0 for now.
 - (a) **Symmetry constraint.** Prove that odd powers of m are forbidden at h = 0 by the $m \to -m$ symmetry, so that the lowest non-trivial terms are m^2, m^4, m^6 .
 - (b) Equilibrium order parameter and β . Assume b > 0. Prove that the global minimum satisfies

$$m_{\rm eq}(T) = \begin{cases} 0, & T > T_c, \\ \pm \sqrt{-a(T)/b}, & T < T_c, \end{cases}$$

and hence the order-parameter critical exponent is $\beta = \frac{1}{2}$.

- (c) Continuity of f and specific-heat jump. Define $f_{\min}(T) = \min_m f(m; T, g, 0)$. Prove that $f_{\min}(T)$ is continuous at T_c , while the specific heat $C = -T \partial^2 f_{\min}/\partial T^2$ has a finite jump at T_c (no divergence). Hint: Evaluate f_{\min} below T_c by inserting m_{eq} from (a2).
- (d) (Optional: finish everything else before coming back for this) **Susceptibility and** γ . Turn on a uniform field h (keep b>0). Prove for $T>T_c$ that the linear susceptibility $\chi=\partial m/\partial h|_{h=0}$ obeys $\chi=1/a(T)$, and infer $\gamma=1$. Prove that the same exponent holds for $T< T_c$ when the response is computed around $m_{\rm eq}\neq 0$.
- (e) (Optional: finish everything else before coming back for this) Critical isotherm and δ . At $T = T_c$ and small h, prove that $m \propto h^{1/3}$, hence $\delta = 3.5$

¹It is worth reminding yourself that only a is T-dependent.

 $^{^2\}beta$ characterizes how the order parameter vanishes as the transition is approached from below: $m \sim (-t)^{\beta}$ for $t \to 0^-$ at h = 0 (equivalently $m \sim (-a)^{\beta}$ since $a \propto t$).

³Here min_m f means the global minimum of f(m) over all real m. Practically: solve $\partial f/\partial m = 0$ for all stationary points m_i and compare the values $f(m_i)$. The phase realized in equilibrium is the one with the smallest f. If two minima have equal free energy the system is on a phase boundary (coexistence). Other local minima with larger f are metastable.

 $^{^4\}gamma$ governs the divergence of the (isothermal) susceptibility: $\chi \equiv \partial m/\partial h|_{h=0} \sim t^{-\gamma}$ as $t \to 0^+$ (and likewise from below when computed about $m_{\rm eq} \neq 0$).

 $^{^{5}\}delta$ is defined by the *critical isotherm* at $T=T_{c}$: $m\sim h^{1/\delta}$ for small h.

- (b) Bridging to first order: softening the quartic term. Assume b = b(g) can change sign under variation of the control parameter g (pressure, composition, ...), while c > 0 remains fixed. Note that you need to restore the m^6 to the free energy, since you have $c \neq 0$ now.
 - (a) Emergence of extra extrema. For b < 0 and small positive a, prove that f(m) has multiple stationary points (m = 0 and nonzero m) if and only if $b^2 > 4ac$. (Optional) Prove that the m = 0 and the largest m are local minima by inspecting $\partial^2 f/\partial m^2$.
 - (b) Coexistence condition. Let $m_{\star} \neq 0$ denote a nonzero minimum when it exists. Coexistence (first-order transition) occurs when $f(m_{\star}) = f(0)$. (Optional): Using the stationarity condition for m_{\star} , prove that coexistence requires

$$b = -4\sqrt{\frac{ac}{3}}$$
 $(a > 0, b < 0),$

You can try to examine the parameter space, i.e. the a-b plane, and mark out the different phases (disordered phase m=0 and ordered phase $m \neq 0$). You will find that the second-order line a=0 (b>0) joins a first-order line through a tricritical point at (a,b)=(0,0).

(c) Order-parameter discontinuity on the first-order line. Does the m_{\star} undergo a jump across the first-order phase transition? What about the case of second order phase transition? Explain what makes first-order phase transition different than the second order one. For your information, the jump objeys

$$m_{\star}^2 = \sqrt{\frac{3a}{c}} = -\frac{3b}{4c}$$

(d) (Optional) Latent heat along the first-order line. Assume $a(T) = a_0(T - T_c)$ and b, c are T-independent near the transition. With $S = -\partial f_{\min}/\partial T$, prove that the latent heat (upon heating across the coexistence line at fixed g) is

$$L = T \left[S_{\text{disordered}} - S_{\text{ordered}} \right] = \frac{a_0 T}{2} m_{\star}^2 > 0,$$

⁶At a first-order transition two phases have equal Gibbs/Helmholtz free-energy density at the same control parameters; the equality $f(m_{\star}) = f(0)$ is precisely this condition at h = 0. The jump in m at coexistence is the order-parameter discontinuity.